Temperature dependence of the gain in p-doped and intrinsic 1.3 m InAs/GaAs quantum dot lasers

نویسندگان

  • N. F. Massé
  • S. J. Sweeney
  • A. R. Adams
  • M. Sugawara
چکیده

The gain of p-doped and intrinsic InAs/GaAs quantum dot lasers is studied at room temperature and at 350 K. Our results show that, although one would theoretically expect a higher gain for a fixed carrier density in p-doped devices, due to the wider nonthermal distribution of carriers amongst the dots at T=293 K, the peak net gain of the p-doped lasers is actually less at low injection than that of the undoped devices. However, at higher current densities, p doping reduces the effect of gain saturation and therefore allows ground-state lasing in shorter cavities and at higher temperatures. © 2006 American Institute of Physics. DOI: 10.1063/1.2387114

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Intrinsic limitations of p-doped and undoped 1.3 μm InAs/GaAs quantum dot lasers

The demand for fast and temperature stable lasers emitting in the telecom wavelengths drives the research on quantum dot lasers. While low and temperature insensitive threshold current densities are expected, InAs/GaAs quantum dot lasers emitting around 1.3 μm have not yet fulfilled their expectations. From the literature, one can observe that although high temperature stability can be achieved...

متن کامل

High performance InAs quantum dot lasers on silicon substrates by low temperature Pd-GaAs wafer bonding

Articles you may be interested in MBE growth of P-doped 1.3 μm InAs quantum dot lasers on silicon Low-threshold high-quantum-efficiency laterally gain-coupled InGaAs/AlGaAs distributed feedback lasers Appl. 1.3 μm InGaAsP/InP lasers on GaAs substrate fabricated by the surface activated wafer bonding method at room temperature Appl.

متن کامل

Carrier transport and recombination in p-doped and intrinsic 1.3 m InAs/GaAs quantum-dot lasers

The radiative and nonradiative components of the threshold current in 1.3 m, p-doped and undoped quantum-dot semiconductor lasers were studied between 20 and 370 K. The complex behavior can be explained by simply assuming that the radiative recombination and nonradiative Auger recombination rates are strongly modified by thermal redistribution of carriers between the dots. The large differences...

متن کامل

Elimination of Bimodal Size in InAs/GaAs Quantum Dots for Preparation of 1.3-μm Quantum Dot Lasers

The device characteristics of semiconductor quantum dot lasers have been improved with progress in active layer structures. Self-assembly formed InAs quantum dots grown on GaAs had been intensively promoted in order to achieve quantum dot lasers with superior device performances. In the process of growing high-density InAs/GaAs quantum dots, bimodal size occurs due to large mismatch and other f...

متن کامل

Gain Compression and Above-Threshold Linewidth Enhancement Factor in 1.3- m InAs–GaAs Quantum-Dot Lasers

Quantum-dot (QD) lasers exhibit many useful properties such as low threshold current, temperature and feedback insensitivity, chirpless behavior, and low linewidth enhancement factor ( H-factor). Although many breakthroughs have been demonstrated, the maximum modulation bandwidth remains limited in QD devices, and a strong damping of the modulation response is usually observed pointing out the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006